
www.manaraa.com

Getting an overview of software
development projects more efficiently

Simon Sandström

Simon Sandström
Spring 2013
Examensarbete, 15 hp
Supervisor: Marie Nordström
External Supervisor: Linus Mähler Lundgren
Examiner: Pedher Johansson
Kandidatprogrammet i datavetenskap, 180 hp

www.manaraa.com

www.manaraa.com

Abstract

At a software development company, many kinds of tools is often used
to manage projects and other types of resources. One task that is per-
formed many times every day by project leaders and developers at these
companies is to get an overview of active projects and software in de-
velopment. This report will examine if a new tool can be introduced that
will make it more efficient to complete this task.

A specific company’s procedure of performing this task including the
tools used in this procedure have been examined. To improve it, an
already existing tool was analysed but did not meet the stakeholders
requirement. Instead a new tool was designed and a prototype was im-
plemented, based on the analysis of the existing tool.

The result is a fully functional tool that can be used to get an overview of
active projects, instead of using two different tools individually. Some
initial usability tests also suggests that using this tool is more efficient.
Although, it also shows that some information about projects can be
harder to retrieve when using the new tool.

www.manaraa.com

www.manaraa.com

Acknowledgements

I wish to thank Linus Mähler Lundgren for giving me the opportunity to do this project and
for guiding me through it and Marie Nordström for helping me and steering me in the right
direction throughout the project.

I also want to thank Madelene Holmgren for giving me the energy needed to complete this
project as well as reading the report and giving me valuable feedback.

Last but not least, I want to thank everyone at Dohi Sweden for making me feel welcome at
your office and for helping me with the project in one way or another.

Thank you.

www.manaraa.com

www.manaraa.com

Contents

1 Introduction 1

1.1 Background 1

1.2 Goals 3

1.3 Development Method 3

1.4 Outline 3

2 Description of the Reference Procedure 5

2.1 Pivotal Tracker 5

2.2 Jenkins 6

2.3 Conclusion 7

3 Analysis of an Existing Tool 9

3.1 ProjectMonitor 9

3.2 Conclusion 10

4 Prototype of a New Tool 11

4.1 System Design 11

4.2 Implementation 14

4.3 Conclusion 18

5 Software Usability 19

5.1 Usability Testing and Evaluation 19

5.2 Comparison of the Different Procedures 20

5.3 Conclusion 21

6 Discussion 23

6.1 Limitations 23

6.2 Future Work 24

Glossary 25

www.manaraa.com

References 27

A Usability Test Tasks 29

B Technical Details Examples 31

C Result of Usability Tests 35

www.manaraa.com

1(37)

1 Introduction

Many kinds of different tools are used within software development companies. Tools for
managing time, projects and other resources. Tools that are used for completing tasks in the
software development process, such as writing, testing and deploying software.

The task of using these tools to get an overview of active projects needs to be performed
many times every day in a software development company. This is an important task since
an overview of project is needed for further planning of projects as well as to identify
projects that are going less well and needs attention. As more new tools are being used, and
tools being replaced, this task can grow complex and time consuming.

1.1 Background

Dohi Sweden is a holding company that offers products and services in the audiovisual
industry. To manage projects in their daily work they use a tool, Pivotal Tracker, which is
a web-based agile project management tool[1]. Another tool that is used by the software
developers at Dohi Sweden is Jenkins, which is a continuous integration server that monitors
the execution of jobs1[2]. At Dohi Sweden this tool is used to automatically build and test
software when a developer commits code to the shared code repository.

To get an overview of the status of projects and software in development, a software devel-
oper or project leader must access both of the tools described above, using their respective
web interface. This task includes, for both of these tools, logging in to the system, selecting
the specific project or job and finally find the relevant information. Information that can
be relevant to both software developers and project leaders includes how much work that
is completed, what and when the next milestones is in specific projects in Pivotal Tracker.
It also includes the execution status of specific jobs in Jenkins. Throughout this report the
procedure of getting an overview of active projects using these two tools individually will
be referenced to as the ”reference procedure”.

The idea behind this project is that it should be possible to get a complete overview of active
projects by using a single tool instead of using every tool individually. This is illustrated in
Figure 1. By using a this single tool time can be saved and spent on other tasks, and projects
going less well can be identified and corrected earlier. In this report, the use of this tool to
get an overview of active projects will be called the ”new procedure”.

1These jobs can be any kind of repeatable tasks that is run on a computer, such as compiling software, testing
software, backing up files, and so on.

www.manaraa.com

2(37)

User

A CB

User

A CB

D

Figure 1: The user to the left is using all three tools A, B and C individually, while the
user to the right only uses tool D, both for the purpose of getting an overview of
active projects.

There are some requirements for a new tool. These was developed as a pre-study for this
project and any details how the requirements was developed will not be presented in this
report. The requirements are:

• R1: It must be able to gather and display some information from atleast the two tools;
Pivotal Tracker and Jenkins.

• R2: The tool must be free to use.

• R3: The tool must be web-based such as it can be accessed from a number of different
devices and operating systems.

• R4: The tool must be designed in a way that makes it more efficient to use for the
purpose of getting an overview of active projects than by using the different tools
individually.

• R5: The tool must support authentication for different users.

• R6: It must be possible to choose what kind of information that should be displayed
for each user.

• R7: The tool must support plug-ins for retrieving and displaying information from
other tools. This means that requirement R1 must be met by the use of two plug-ins.

www.manaraa.com

3(37)

1.2 Goals

The goal of this project is to develop a new tool as described in the previous section. The
goal can be divided in to these sub-goals:

1. Find and evaluate any existing tools that might meet the requirements of a new tool.

2. If no existing tool meets the requirements: design and implement a prototype of a
new tool.

3. Compare the reference procedure with the new procedure, which uses the new tool,
in the aspect of usability.

1.3 Development Method

During this project, an agile development method called Scrum[3] have been used. The
general idea of Scrum is to divide the project into iterations. Each iteration, or sprint, is
an abstract notion of a predefined time span with a clear and decisive goal. These sprints
usually span over one to a few weeks. The purpose of having short sprints, and using agile
development methods in general, is to quickly build prototypes that can be tested to make
decisions on how to proceed.

Here follows a breakdown of typical daily and weekly activities that can be performed when
using Scrum:

• Every day begins with a SCRUM meeting, discussing:

– What was done yesterday

– Problems that have been discovered

– What is to be done until tomorrow

• Every week there is two bigger SCRUM meetings:

– Monday - Plan and set the goals of the week

– Friday - Summarise the week’s work, successes and problems

1.4 Outline

Chapter 2 presents the reference procedure and describes it in detail. A list of the tools
used in this procedure is presented including what the tools are, how they are used and
why they are used. Chapter 3 presents an analysis of an existing tool that could be used
in a new procedure to get an overview of projects. In chapter 4, the system design and
implementation of a new tool, the prototype, is presented. Chapter 5 explains software
usability and how describes how one can evaluate it in a software. It concludes with an
description of how the usability tests on the new tool was performed as well as a summary
of the results. Finally, in Chapter 6, a discussion of the results and the overall work of the
project is presented.

www.manaraa.com

4(37)

www.manaraa.com

5(37)

2 Description of the Reference Procedure

There are two essential tools that are being used in the reference procedure for the purpose of
getting an overview of active projects. These two tools will be described in detail, including
what they are used for, how they are used and any technical details that can be of use when
designing a new tool.

2.1 Pivotal Tracker

Pivotal Tracker is a web-based agile project management tool[1]. It is developed by Pivotal
Labs and hosted on their web servers, which means that a user needs an Internet connection
in order to use the tool. There are a few pricing plans to pick from depending on how many
projects the user wants to have, how many collaborators all projects can have, and more.

The tool have a strong connection to the development method Scrum. The project is divided
into iterations that can be of any length in terms of weeks. Each project have a current-
iteration log and a product backlog that consists of user stories that can be of four different
types:

Features: are stories that provide verifiable business value to the team’s customer. These
user stories is estimated in terms of points, which is described below.

Bugs: represents unintended behaviour of the product that must be fixed.

Chores: are stories that are necessary, but provide no direct, obvious value to the customer.

Releases: are milestone markers, and allow your team to track progress towards concrete
goals.

The work needed to complete a feature is estimated in terms of points, which also can be
seen as time. The tool can calculate approximately how much work is completed for each
iteration and this approximation is used to fill the current-iteration log with user stories
from the product backlog when a new iteration starts. This information is also used to show
different types of charts that can be of use for the project team.

Pivotal Tracker is being used to manage all projects. It is used by developers to plan the
projects that they are working on, adding features that must be completed, bugs that must be
fixed and milestones in the development. Project leaders also use this tool to keep track of
all the active projects that they are responsible for. They use the tool to check if milestones
will be completed in time, to find projects that are going less well and needs attention, and
much more.

www.manaraa.com

6(37)

Technical Details

Pivotal Tracker provides an API1 that can be used to retrieve, create, update and delete
information such as projects, iterations and stories, using the four HTTP2 methods GET,
POST, UPDATE and DELETE, respectively[4]. The response from the API for each request
is formatted using XML3. To use the API, a user must authenticate himself using either their
user name and password or using a user token that can be created after logging in on the
Pivotal Tracker web site. Appendix B contains an example of a request and the response
when using the API.

It is also possible to use the activity webhook[5] in Pivotal Tracker. Using this, Pivotal
Tracker will send an XML formatted document using the HTTP POST request to any spec-
ified URL when there is activity for a specific project. The document contains detailed
information about the activity, see AppendixB for examples.

2.2 Jenkins

Jenkins is a web-based tool used to monitor the execution of jobs[2]. As opposed to Pivotal
Tracker, Jenkins can be run locally on the users own computer or on one of the company’s
server. Jenkins report results of each execution for each job, this report includes if the
execution was successful or if it failed and the time taken for the execution.

The practice to continuously build and test software when new or changed source code have
been committed to the shared code repository is called continuous integration[6]. Jenkins
can be used as a continuous integration system by setting up jobs for each software project
that automatically builds the software and executes unit tests when code have been commit-
ted to the repository.

Jenkins is being used as a continuous integration system. All of the software projects have a
corresponding job in Jenkins. The information that Jenkins reports whenever a job has been
executed, which is done when a developer commits new or changed code to the repository,
is valuable for each of the members in the project including the project leader.

Technical Details

Jenkins have support for third party plug-ins, which means that new functionality can be
added to the tool. There is many available plug-ins to use and most of these plug-ins are
open source and free to use and modify. One of the plug-ins is Notification Plugin4. This
plug-in uses the technique webhooks to send information about every execution of a specific
job to a specified URL. The information is encoded using JSON5 and contains information
such as, the name of the job, the id of the execution, if the execution was started, completed
or finished and the status if the execution finished. Examples of information that is sent is
presented in Appendix B.

1Application Programming Interface: Describes how applications can communicate with each other.
2Hypertext Transfer Protocol: A protocol to transfer hypertext and other kinds of data between computers.
3XML is a language for encoding information.
4Official website:https://wiki.jenkins-ci.org/display/JENKINS/Notification+Plugin
5JavaScript Object Notation: A text based standard to encode data.

https://wiki.jenkins-ci.org/display/ JENKINS/Notification+Plugin

www.manaraa.com

7(37)

There is also an API that Jenkins provides. The information that the API provides can
be retrieved in three different formats: XML, JSON and a Python-specific format. The
Python-specific format can be converted directly to Python objects using the method eval6.
Information such as: configured jobs, status of executed jobs and jobs in the execution
queue can be retrieved with this API.

2.3 Conclusion

The two tools described in this chapter are used for different things. Pivotal Tracker is used
to manage projects, which includes time, resources and milestones in the development of
the software. Jenkins is used only in the development of the software to automate certain
steps and to verify that the software does what it is supposed to do, without errors.

Both tools are web-based which means that can be accessed with the use of different devices
and operating systems. It also means that the tools can be accessed anywhere, if the user
have an Internet connection. A new tool, that a user should be able to use instead of using
Pivotal Tracker and Jenkins individually, should therefore also be web-based and accessible
via the Internet.

Another aspect is the amount of information that can be gathered using these tools. If a
new tool should retrieve and collect information from these tools, the information must be
filtered. Either the tool itself should be designed such as it only show some information, or
so that each different user can decide what information should be displayed.

Both tools offers multiple ways of retrieving the information programmatically. This makes
it easy for a new tool to be able to keep up to date information from these tools, fully
automatically.

6See: http://docs.python.org/2/library/functions.html#eval

http://docs.python.org/2/library/functions.html#eval

www.manaraa.com

8(37)

www.manaraa.com

9(37)

3 Analysis of an Existing Tool

One existing tool have been analysed to check whether it fits the requirements of a new tool.
The analysis was also done in order to find architectural patterns, design patterns and other
general design ideas that can be of use if the results show that this tool does not meet all the
requirements.

3.1 ProjectMonitor

ProjectMonitor is a tool that aggregates information from continuous integration systems
and displays it as a web page[7]. The tool, as of May 2013, supports six different con-
tinuous integration systems; Cruise Control1, Jenkins, TeamCity2, Travis CI3, tddium4 and
Semaphore5. The purpose of this tool is to display job execution results from any of the
supported systems on a single web page, which can be shown on a big screen monitor or
TV, making it easy for developers to get an overview of active projects that they are involved
in. ProjectMonitor is open source and licensed under the MIT license6.

Figure 2: The web page that ProjectMonitor produces, with seven projects configured .

1http://cruisecontrol.sourceforge.net/
2http://www.jetbrains.com/teamcity/
3https://travis-ci.org/
4https://www.tddium.com/
5https://semaphoreapp.com/
6See https://github.com/pivotal/projectmonitor/blob/master/MIT.LICENSE

http://cruisecontrol.sourceforge.net/
http://www.jetbrains.com/teamcity/
https://travis-ci.org/
https://www.tddium.com/
https://semaphoreapp.com/
https://github.com/pivotal/projectmonitor/blob/master/MIT.LICENSE

www.manaraa.com

10(37)

Figure 2 shows the web page that ProjectMonitor produces with seven projects configured.
Each project is shown as a box with an abbreviation of its name, the time since the last
execution of the job and the status for the last ten executions. A successfully executed job is
denoted with a dot and an executed job that failed is denoted with a cross. The background
color of the box also tell the user the statuses of the last executed jobs. A green background
means that most of the executions was successful, a red background means that most of the
executions was unsuccessful and a yellow background means that no executions have yet
been completed.

Information are retrieved from the different continuous integration systems using one of two
different techniques, depending on what the particular system supports:

Polling: ProjectMonitor polls the continuous integration system for new information peri-
odically. The information is retrieved using the continuous integration systems API
with the specified project id and login credentials.

Webhooks: The continuous integration systems is configured to send job status informa-
tion to ProjectMonitor with the use of HTTP when certain events have occurred.

ProjectMonitor have an administration web interface so that an authenticated administrator
can configure what jobs should be displayed. It does support Pivotal Tracker in the sense
that a continuous integration system job can be associated with a project in Pivotal Tracker.
The information shown about the project is limited and since a project in Pivotal Tracker
must be associated with a job from one of the continuous integration systems, only projects
with software being developed can be displayed.

3.2 Conclusion

ProjectMonitor does not fit all of the requirements of a new tool. The tool can only show
information from a Pivotal Tracker project if there is an associated job in Jenkins. The
stakeholders have many projects that does not have an associated job in Jenkins and projects
that does not include developing software at all. This could be resolved by setting up jobs
in Jenkins for each project in Pivotal Tracker that does not already have one. But it will take
up both processing power and disk space, which is a disadvantage.

The other feature that ProjectMonitor lacks is the possibility for a specific user to only get
information from a subset of the configured projects. For example: there are four active
projects, project A, B, C and D. One user only wants to see information from project A and
B while another user only wants to see information about project C and D. The project leader
for all of these projects wants to see information from all four. As this tool is open source,
this feature could have been added. To do this, one must read the source code of the software
and learn how it is built and how it works. This can take a long time, especially if the source
code is not very well commented. In this case the source code was not commented at all, so
this approach was not feasible.

www.manaraa.com

11(37)

4 Prototype of a New Tool

Based on the requirements in Section 1.2, the theory behind Software Usability which is
described in Chapter 5, the description of the reference procedure in Chapter 2 and the
analysis of the existing tool in Chapter 3, a system design of a new tool is presented. A
simple implementation of the system design is also presented in this Chapter.

4.1 System Design

The system design of the new tool was designed mainly based on the results of the analysis
of the existing tool, including the architecture and design patterns used in this tool. The
architectural pattern used is the client/server pattern, which in this case means that the pro-
totype acts as a HTTP server and is accessible by a user with a client, such as a web browser.
This makes it possible to access the tool from almost any type of device that is connected
to the Internet. The two techniques polling and webhooks, which the existing tool that is
described in Chapter 3 uses, are used in this system design. This makes it possible for the
tool to automatically retrieve information from both Pivotal Tracker and Jenkins.

Infohub Core Plug-in Manager

Authentication

Pivotal Tracker
Plug-in

Jenkins
Plug-in

Web server

Pivotal TrackerJenkins

Notification
Plugin

Activity
WebHooks API

Web Browser
HTML5, JavaScript

Long
Polling

Prototype

Figure 3: System design of the prototype. Continuous lines represents connections of the
modules in the system and the dotted lines represents communication over a
network connection, such as the Internet.

www.manaraa.com

12(37)

An overview of the system design is illustrated in Figure 3. The system can be divided into
two parts which will be described individually. The first part, called Web Server, focuses
on how a user interacts with the tool while the other part, called Plug-Ins, focuses on how
the tool interacts and retrieves information from other systems. The module Infohub Core
ties these two parts together and creates a fully functional tool that can be used to get an
overview of active projects.

Web Server

This subsection describes the following modules: Long Polling, Web Server and Authenti-
cation, as illustrated in Figure 4.

Infohub Core Plug-in Manager

Authentication

Pivotal Tracker
Plug-in

Jenkins
Plug-in

Web server

Pivotal TrackerJenkins

Notification
Plugin

Activity
WebHooks API

Web Browser
HTML5, JavaScript

Long
Polling

Figure 4: The modules Long Polling, Web Server, Infohub Core and Authentication.

To be able to access the tool from different places and different devices, a web server is used.
When entering the web page that the web server produces, a user has to authenticate. The
authentication is handled by the Authentication module, which verifies the users credentials
and also tells the web server what types of plug-in specific settings the user have. The plug-
ins and their settings is described in the next subsection. After the user have authenticated,
a new web page is displayed with the information that is stored in the tool.

Long polling is used to dynamically update the information on the web page with new
information from the tool. There are two techniques for polling[8]:

Short polling is the simplest of the two methods and is done by having the client period-
ically asks the server for new information. The server responds at once, with either
that no new information is available or with the new information. As the client only
polls for new information periodically, there can be a delay between when there is
new information available and when the client actually gets the new information.

Long polling is a more complex method than short polling. It is also done by having the

www.manaraa.com

13(37)

client ask the server for new information. If there is new information to be returned,
the server responds with the information at once. If there is no new information
available, the server waits to respond until there actually is new information to be
returned. It is almost no delay between when there is new information available and
when the client gets the new information. This method uses more server resources
than short polling due to having to keep the connections with the clients open as well
as keeping track of connected clients. When new information have been received by
the client it restarts the procedure.

Long polling was chosen because it minimises the delay between when new information is
available and when the user actually sees the new information. Long polling does on the
other hand increase the number of connections that the web server must keep track of. But
since there will not be a large number of users connected at the same time, this will not
cause any problems.

Plug-ins

This subsection describes the following modules: Plug-in Manager, Pivotal Tracker Plug-in
and Jenkins Plug-in, as illustrated in Figure 5.

Infohub Core Plug-in Manager

Authentication

Pivotal Tracker
Plug-in

Jenkins
Plug-in

Web server

Pivotal TrackerJenkins

Notification
Plugin

Activity
WebHooks API

Web Browser
HTML5, JavaScript

Long
Polling

Figure 5: The modules Plug-in Manager, Pivotal Tracker Plug-in and Jenkins Plug-in

A plug-in system in a new tool is one of the requirements. This means that it should be
possible to add new functionality in the aspect of supporting new systems without modifying
many of the different modules in the system. A plug-in is a piece of software that adds
functionality to another software, called the host application [9]. Plug-ins are used in this
system design to handle all communication with other systems, such as Pivotal Tracker and
Jenkins. The module Plug-In Manager is used to dynamically load and manage available
plug-ins.

Each plug-in in this design have the following responsibility:

www.manaraa.com

14(37)

1. Return the stored information when the a user requests it via the web server. The
user can have specific settings for this plug-in, which means that the stored informa-
tion should be filtered before returned to the user. For example; the Pivotal Tracker
plug-in have information stored for project A and B. The user have specific settings
for this plug-in that says that the user only wants information from project A. Only
information that belongs to project A should be returned.

2. Retrieve and store information. For example; the Pivotal Tracker plug-in should re-
trieve project information via the Pivotal Tracker API.

3. Provide a web page where a user can configure the plug-in specific settings.

This system design contains descriptions of two specific plug-ins; the Jenkins plug-in and
the Pivotal Tracker plug-in. The Jenkins plug-in simply retrieves job notifications from
the Jenkins server using webhooks, which is described in Section 2.1. A user can configure
what jobs in Jenkins that should be displayed. The Pivotal Tracker plug-in uses two methods
for retrieving information. The first method is to retrieve project activity information from
Pivotal Tracker using webhooks and the other method is to retrieve project information from
the Pivotal Tracker API. Both these methods are described in Section 2.2.

4.2 Implementation

The prototype that was implemented in this project is based on the system design that is
presented in the previous section, but does not contain all the features in it. Figure 6 shows
the modules that was implemented and the module were not. The following list summarises
the features that is presented in the previous section and if they are implemented or not:

Implemented: Web server that serves an HTML document with JavaScript code that dy-
namically refreshes the content of the page with the technique long polling.

Implemented: A plug-in architecture. Uses an abstract class that declares three methods
that a plug-in can override to add functionality to the prototype.

Implemented: Two plug-ins. One for Pivotal Tracker project information and one for Jenk-
ins job execution statuses.

Implemented: Plug-in manager that initialises and uses all plug-ins that are available .

Not implemented: User authentication and user-specific settings for plug-ins. This means
that all projects in Pivotal Tracker and all jobs in Jenkins that are configured will be
displayed for all users.

www.manaraa.com

15(37)

Infohub Core Plug-in Manager

Authentication

Pivotal Tracker
Plug-in

Jenkins
Plug-in

Web server

Pivotal TrackerJenkins

Notification
Plugin

Activity
WebHooks API

Web Browser
HTML5, JavaScript

Long
Polling

Prototype

Figure 6: The modules that was implemented have a green background and the module
that was not implemented have a red background.

Web Server

The prototype is written in the programming language Python, excluding the HTML5 web
page and its JavaScript code. The web server part of the implementation uses the library
Tornado. Tornado is a Python web framework that uses non-blocking network communica-
tion, which makes it ideal for long polling[10].

There is one web page that can be requested from the web server. This page contains
the current information from all loaded plug-ins as well as a JavaScript function that is
called automatically when the document is loaded. This function uses the JavaScript library
jQuery1 and is used to retrieve new information from the prototype and inserts it to the
web page dynamically. The function uses the long polling method and the encoding JSON
to accomplish this. The layout of the web page is dynamically created using the template
system2 in Tornado.

A screen shot of the web page that the prototype produces can be seen in Figure 7.

1See: http://jquery.com/
2See: http://www.tornadoweb.org/en/stable/template.html

http://jquery.com/
http://www.tornadoweb.org/en/stable/template.html

www.manaraa.com

16(37)

Figure 7: The web page that the prototype produces with the two plug-ins for Pivotal
Tracker and Jenkins. The information about some projects from Pivotal Tracker
are private and therefore blurred in this screen shot.

Plug-in Architecture

When the tool is started the plug-in manager searches a specific folder named plugins for
all classes that derives from an abstract plug-in class. This class declares three methods
which each plug-in can override to add functionality to the prototype. In addition to these
methods, two class variables should be set by each plug-in. The class variables and methods
are:

name A string with the name of the plug-in. This string can contain any type of characters
and will be displayed on the web page.

internal name A string with the internal name of the plug-in. This string can only contain
lower case alphanumeric characters, which means the letters a to z as well as the
numbers 0 to 9. The string can also contain underscores. This string is used for a
number of things which is described later in this section.

get content() This method should return the internal information of the plug-in as a string,
which can include HTML. This method is required by all plug-ins.

poll() This method can be overridden if the plug-in wants to periodically do something,
for example retrieve information from a remote server using its API. This method is
optional to override for a plug-in and it should return True if new information now is
available in the plug-in, otherwise False.

webhook(request) This method, if defined, is called when the web server gets an HTTP
POST request to the path /plugins/[internal name]/, where [internal name] is the

www.manaraa.com

17(37)

internal name of the plug-in as described previously in this subsection. The object
request contains the included information of the POST request. As with the method
poll(), this method is also optional and should return True if there is new information
available and otherwise False.

Implemented Plug-ins

Two plug-ins was implemented for this prototype, one for retrieving project information
from Pivotal Tracker and another for retrieving information about executed jobs from Jenk-
ins. These two plug-ins will be described in detail in this subsection.

The Pivotal Tracker plug-in uses the activity webhook functionality in Pivotal Tracker as
well as the Pivotal Tracker API to retrieve information. The plug-in is statically configured
with a list of tuples. Each tuple contains a project id and a user token where the user token
is used to gain access to the API as described in the Section 2.1. The information that this
plug-in displays to the user of the prototype includes: the number of the current iteration,
the current velocity of the project measured in points3, how many points that are completed
in the current iteration, how many points there are left to complete in the current iteration,
the next milestone and when it is due and finally a list with the latest activity in the project.

When the plug-in is first initialized it accesses the Pivotal Tracker API and retrieves infor-
mation about all the projects that are configured. The webhook method is defined so that
the plug-in can be notified when there has been new activity in one of the projects. The
plug-in actually does not use the information that is sent to the webhook method, instead it
accesses the Pivotal Tracker API to update the internal information. For each project that
is configured in the plug-in, one must enter the URL to the prototype in the Pivotal Tracker
web interface so that it does send activity information to the prototype.

The Jenkins plug-in uses the same approach as the Pivotal Tracker plug-in. The webhook
method is defined so that the plug-in is notified when a job have been executed on the
Jenkins server. For each notification, the plug-in accesses the Jenkins API to retrieve status
about the latest executions. The plug-in Notification Plugin, which is described in Section
2.2, needs to be installed on the Jenkins server and configured to send status of jobs that
have been executed to the prototype web server.

This plug-in displays how many of the last five executions that have failed and a list of the
the five last executions including if the execution succeeded or failed and what user started
the execution.

User Interface

The user interface for the tool was designed with usability in mind. Usability is described
in more detail later, in Chapter 5. Usability can be divided in to the five components;
learnability, efficiency, memorability, errors and satisfaction. To make it easy to learn how
to use the tool and how to remember to use the tool, it was designed to be as simple as
possible. To avoid the possibility of a user making errors when using the tool, no buttons,
options or links were used at all. Instead, all information from the plug-ins are displayed on
a single web site. This also make the tool efficient to use.

3Described in Section 2.1

www.manaraa.com

18(37)

A user only need to enter the web site, and can then read all information that is available. As
seen on Figure 7, the user interface is split in two parts. One part that contains information
from the plug-in for Pivotal Tracker and one part with information from the plug-in for
Jenkins. The information in each part is divided for each project. This makes it easy to find
the correct information and to see from which tool this information belongs to.

4.3 Conclusion

As presented in Chapter 1, these are the requirements for a new tool:

• R1: It must be able to gather and display some information from atleast the two tools;
Pivotal Tracker and Jenkins.

• R2: The tool must be free to use.

• R3: The tool must be web-based such as it can be accessed from a number of different
devices and operating systems.

• R4: The tool must be designed in a way that makes it more efficient to use for the
purpose of getting an overview of active projects than by using the different tools
individually.

• R5: The tool must support authentication for different users.

• R6: It must be possible to choose what kind of information that should be displayed
for each user.

• R7: The tool must support plug-ins for retrieving and displaying information from
other tools. This means that atleast two plug-ins must be implemented due to require-
ment R1.

The requirements R1, R2, R3 and R7 are all met by the new tool. It does have plug-ins
for both Pivotal Tracker and for Jenkins, it is free to use and it can be accessed with a web
browser using the Internet. To determine if requirement R4 is met, one can not only look
at the specifications of the tool, but to use some kind of usability test or evaluation. This is
done and presented in Chapter 5. Requirement R5 and R6 are met by the system design of
the new tool, but are not met by the actual implementation of the new tool.

www.manaraa.com

19(37)

5 Software Usability

There are two attributes of a software that together can measure how useful a software is.
The first attribute is utility, which is if a user can use the software to complete certain tasks.
The second attribute is usability, which estimates how easy a software or any other type of
product is to use[11]. In this Chapter, usability is explained in detail. Different types of
methods for evaluating usability is also presented.

Usability can be divided into these five components:

Learnability: Is it easy to learn how to use the product to accomplish certain tasks?

Efficiency: How fast can tasks be completed with the product?

Memorability: Is it easy for a user to remember how to use the product?

Errors: Does the user often encounter errors while using the product?

Satisfaction: Does the user feels satisfied when using the product?

It is very important that software is easy and efficient to use. Software that is developed and
sold to customers should be designed with usability in mind, or else the customers might
choose an alternative that is easier to use. Internal software that is developed and should be
used by employees at a company should also be designed with usability in mind. Employees
that have to spend too much time to accomplish some tasks lowers the productivity.

There are many methods for evaluating and improving usability in a software. These meth-
ods can be divided into two types, usability tests and usability evaluations[12]. These two
types will now be described in detail. After these two types have been described, the us-
ability evaluation method used to compare the reference procedure and the procedure that
includes the use of a new tool will be described.

5.1 Usability Testing and Evaluation

Usability Testing

Usability testing is used to evaluate a software by testing it with representative users[13].
The purpose of performing usability tests is to identify problems with the software that
must be corrected as well as collecting quantitative data. The quantitative data can show
that some tasks takes too much time or that users often fail to accomplish certain tasks.
Usability tests should be performed as early as possible so that problems can be corrected
without the need to change major parts of the design or implementation.

There are at least two things that one must keep in mind when performing theses tests. The
first is to test the software, not the users. The result of a usability test must only consists of

www.manaraa.com

20(37)

eventual flaws and problems with the software, not any problems with a user. The second
thing to keep in mind is that the results of a usability test should be used to actually correct
these problems.

The general method of a usability test can be described, slightly simplified, as the following
steps:

1. Develop a test plan that specifies what to test, why to test it, when to test it and how
to test it.

2. Create a list of tasks that the users should try to accomplish during the test.

3. Set up an environment where the test can take place.

4. Let the users, one by one, try to accomplish the given tasks. While the user is testing
the software, the observer takes notes and other types of data. The data to collect is
decided in the test plan.

Usability Evaluation

A usability evaluation is usually performed without any users. Surveys, cognitive walk-
throughs, expert reviews and heuristic evaluations are some evaluation techniques. This
type of evaluation is performed to find possible problems that can arise when a user uses
the software. These problems can later be confirmed by performing a usability test with
representative users, which was described in the previous section.

One of the most popular method is the heuristic evaluation[14]. In this method, the software
is reviewed and compared against a set of heuristics. A heuristic is a ”rule of thumb,” or a
good guide to follow when making decisions. The result of the evaluation is a list of poten-
tial usability issues. One of the best known developed heuristics are the one developed by
Jakob Nielsen and Rolf Molich in 1990[15] and later refined by Jakob Nielsen in 1994[16].
These will not be explained in more detail in this report.

5.2 Comparison of the Different Procedures

To compare the reference procedure and a new procedure which uses the new tool, two
different usability tests have been performed. The tests focuses on two types of users,
project leaders and software developers. The reason for focusing on these to users is because
a project leader is involved in a number of projects while a developer is typically only
involved in one project. The tasks that have been performed in these tests are presented in
Appendix A. The test was performed with two project leaders and two software developers.
These steps describes how these tests was performed:

1. It is explained to the user why this test is being done and how the test is going to be
performed.

2. The user reads the task that the user should try to complete and asks questions if
anything is unclear.

www.manaraa.com

21(37)

3. Before the test starts the user should be logged out from Pivotal Tracker and Jenkins
and not have any of those web pages open.

4. A timer is started and the user can begin the task.

5. The observer takes notes on how the user is completing the task. A list of quantitative
and qualitative measurements that are collected during the tests is described later in
this section.

6. The timer is stopped when the user thinks that the task is completed or if the user gets
stuck and can not complete the task.

The measurements that these tests will collect focuses mostly on the efficiency aspect of
usability, as the goal of the project is to find a way to make it faster and easier to get an
overview of projects. Other aspects of usability, such as learnability and satisfaction, in the
different procedures and their respective tools can be gathered based on the users comments
for each test. Here follows a list of the quantitative and qualitative measurements that was
collected with both of these tests:

• Comments by the user on each task.

• If the user successfully completed the task.

• The number of different software tools that was used in order to complete the task.

• The time to complete the task.

• The number of steps taken to complete the task. A step is defined as:

– Clicking a button, clicking a link or similar to reach a new web page.

– Entering any type of text, such as a URL or user credentials. Each text box
with input from the user, both manually entered or automatically set by the web
browser, counts as one step.

5.3 Conclusion

The raw results from these tests can be found in Appendix C. As only a few initial tests has
been done no real conclusions can be drawn from the results. In order to get proper results
and to be able to draw conclusions, more test and more complex tests must be done.

As stated in Chapter 4, to find if the new tool meets requirement R4, one must use usability
tests or usability evaluation. Since these are inital and very simple tests, this can not be
determined.

www.manaraa.com

22(37)

www.manaraa.com

23(37)

6 Discussion

The first goal of this project states: ”Find and evaluate any existing tools that might meet
the requirements of a new tool.”. One existing tool was found and evaluated, as presented in
Chapter 3, but did however not fit all of the requirements of a new tool. As the tool is open
source it could have been modified to fit the requirements, but a decision was made that it
would have taken longer time to do this than to develop a new tool.

The second goal of this project states: ”If no existing tool meets the requirements: design
and implement a prototype of a new tool.”. Since the only tool found did not fit the re-
quirements, a new tool had to be developed. The development of this tool was done in two
different steps.

First the system design of the tool was developed. This design explains how the system
should be divided and how it should work, internally. Many of the features in the system
design was developed by looking at the requirements of a new tool, as well as the existing
tool which was evaluated in Chapter 3. The system design does meet all of the requirements
of a new tool.

The second step of this goal was to implement the system design to a working tool. The
results of this step is a fully functional tool which however, only meets some of the require-
ments of a new tool.

The third goal of this project states: ”Evaluate the new tool in the aspect of usability to see
whether it is a good solution and to find points of improvement.”. This goal have not been
completely accomplished. Only some initial usability tests have been done. To be able to
draw any conclusion about the new tool, and to tell whether this tool is efficient to use, more
tests must be done.

6.1 Limitations

There are some limitations with the new procedure. The tool that is used in this procedure,
which is presented in Chapter 4, can retrieve and display some information from the two
tools Pivotal Tracker and Jenkins. But since this information must fit on a single web page,
not all valuable information can be displayed. One way to deal with this problem was
presented in the system design section of Chapter 4, namely to make it possible for specific
users to log in to the system and configure what kind of information should be displayed to
that specific user.

www.manaraa.com

24(37)

6.2 Future Work

As already stated in previous chapters, more usability tests and also even usability evalua-
tions should be done. There are also many features that can be added to the tool that was
developed in this project. The missing features that is described in the system design of
the prototype should be implemented. As this gives the ability for every single user to cus-
tomise the tool as he or she wishes, the procedure of getting an overview of projects using
this tool can be even more efficient.

The requirements focused on the two tools Pivotal Tracker and Jenkins, but there are many
more tools that are in use. So, plug-ins to the prototype that can retrieve and display infor-
mation from these other tools and systems should be developed. There are many ideas of
plug-ins that can be created and used. Here is a list of a few of them:

• Retrieve and display information from the company’s internal schedule system, to be
able to see if any employee is home sick, away on a business trip, away on vacation
and so on.

• Retrieve and display information from social media that is of interest of the employees
at the company.

• Retrieve and display sales information for products that the company have developed.

www.manaraa.com

25(37)

Glossary

This section contains a list with descriptions of terms that have been used through out this
report, see Table 1.

Table 1: Description of terms used in this report

Term Description
API API is an abbreviation for Application Programming Interface. An

API describes how software can communicate with each other.
Continuous
Integration

Continuous Integration is a software development practice where
members of a team integrate their work frequently to a shared code
repository.

HTTP HTTP is an abbreviation for Hypertext Transfer Protocol, which de-
scribes how hypertext should be transferred between hosts.

JavaScript JavaScript is a programming language, originally implemented as part
of web browsers.

JSON JSON is an abbreviation for JavaScript Object Notation. It is a text
based standard to encode data.

Open source Open source generally refers to a software in which the source code
is available to the general public for use and/or modification from its
original design.

Polling Polling refers to actively sampling the status of an external device by
a client program as a synchronous activity.

Product
backlog

In Scrum, each project have a prioritised list, called product backlog,
of features that should be added to the product.

Scrum Scrum is an iterative and incremental agile development method.
Sprint In Scrum, each work cycle is called a sprint. Every sprint consists of

clear goal that should be completed before the sprint ends. The time
span for a sprint can range from one to a few weeks.

Sprint back-
log

In Scrum, the sprint backlog is a prioritised list with the features that
should be added to the product in the current sprint. The features in
this list is gathered from the product backlog in the start of every new
sprint.

Unit testing Unit testing is a method for testing source code to find defects, flaws
and other kind of bugs in software in development.

User Story In Scrum, a feature that should be added to the product is often called
an user story, or just a story.

Webhook Webhook is a method for sending notification or other types of infor-
mation from one system to another system when a certain event have
occurred.

Continued on next page

www.manaraa.com

26(37)

Table 1 – Continued from previous page
Term Description
XML XML is an abbreviation for Extensible Markup Language, which is

a language for encoding information in a format that is both human-
readable and machine-readable.

www.manaraa.com

27(37)

Bibliography

[1] Pivotal Labs Inc. Pivotal Tracker: Features.
https://www.pivotaltracker.com/features.
Visited 07/05/2013.

[2] Jenkins CI. Meet Jenkins.
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins.
Visited 07/05/2013.

[3] Jeff Sutherland Ken Schwaber. The Scrum Guide.
http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_
Guide.pdf.
Visited 10/05/2013.

[4] Pivotal Labs Inc. Pivotal Tracker Help: API.
https://www.pivotaltracker.com/help/api.
Visited 07/05/2013.

[5] Pivotal Labs Inc. Pivotal Tracker Help: Integrations.
https://www.pivotaltracker.com/help/integrations?version=v3.
Visited 07/05/2013.

[6] Sean Stolberg. Enabling Agile Testing Through Continuous Integration.
http://www.agilemethod.csie.ncu.edu.tw/agilemethod/download/
2009papers/2009%20Enabling%20Agile%20Testing%20Through%
20Continuous%20Integration/Enabling%20Agile%20Testing%20Through%
20Continuous%20Integration.pdf.
Read 07/05/2013.

[7] Pivotal Labs Inc. ProjectMonitor offical web page.
https://github.com/pivotal/projectmonitor.
Visited 07/05/2013.

[8] Djane Rey Mabelin. Long Polling vs Short Polling.
http://codertalks.com/long-polling-vs-short-polling/.
Visited 20/05/2013.

[9] Dorian Birsan. On Plug-ins and Extensible Architectures.
http://queue.acm.org/detail.cfm?id=1053345.
Visited 20/05/2013.

[10] Tornado Official Web page. Main web page.
http://www.tornadoweb.org/en/stable/.
Visited 21/05/2013.

https://www.pivotaltracker.com/features
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
http://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scrum_Guide.pdf
https://www.pivotaltracker.com/help/api
https://www.pivotaltracker.com/help/integrations?version=v3
http://www.agilemethod.csie.ncu.edu.tw/agilemethod/download/2009papers/2009%20Enabling%20Agile%20Testing%20Through%20Continuous%20Integration/Enabling%20Agile%20Testing%20Through%20Continuous%20Integration.pdf
http://www.agilemethod.csie.ncu.edu.tw/agilemethod/download/2009papers/2009%20Enabling%20Agile%20Testing%20Through%20Continuous%20Integration/Enabling%20Agile%20Testing%20Through%20Continuous%20Integration.pdf
http://www.agilemethod.csie.ncu.edu.tw/agilemethod/download/2009papers/2009%20Enabling%20Agile%20Testing%20Through%20Continuous%20Integration/Enabling%20Agile%20Testing%20Through%20Continuous%20Integration.pdf
http://www.agilemethod.csie.ncu.edu.tw/agilemethod/download/2009papers/2009%20Enabling%20Agile%20Testing%20Through%20Continuous%20Integration/Enabling%20Agile%20Testing%20Through%20Continuous%20Integration.pdf
https://github.com/pivotal/projectmonitor
http://codertalks.com/long-polling-vs-short-polling/
http://queue.acm.org/detail.cfm?id=1053345
http://www.tornadoweb.org/en/stable/

www.manaraa.com

28(37)

[11] Jakob Nielsen. Usability 101: Introduction to Usability.
http://www.nngroup.com/articles/usability-101-introduction-to-usability/.

Visited 10/05/2013.

[12] U.S. Department of Health & Human Services. Usability.gov: Types of Evaluations.
http://www.usability.gov/methods/test_refine/learneval.html.
Visited 10/05/2013.

[13] U.S. Department of Health & Human Services. Usability.gov: Usability Testing.
http://www.usability.gov/methods/test_refine/learnusa/index.html.
Visited 10/05/2013.

[14] U.S. Department of Health & Human Services. Usability.gov: Heuristic Evalua-
tions.
http://www.usability.gov/methods/test_refine/heuristic.html.
Visited 10/05/2013.

[15] Jakob Nielsen Rolf Molich. Improving a Human-Computer Dialogue.
http://ouvea.edu.ups-tlse.fr/˜truillet/ens/m2iaici/articles/
p338-molich.pdf.
Visited 26/05/2013.

[16] Jakob Nielsen. Enhancing the Explanatory Power of Usability Heuristics.
http://www.cs.helsinki.fi/u/salaakso/kl2-2002/lahteet/
Nielsen94-Enhancing-Heuristics.pdf.
Visited 26/05/2013.

http://www.nngroup.com/articles/usability-101-introduction-to-usability/
http://www.usability.gov/methods/test_refine/learneval.html
http://www.usability.gov/methods/test_refine/learnusa/index.html
http://www.usability.gov/methods/test_refine/heuristic.html
http://ouvea.edu.ups-tlse.fr/~truillet/ens/m2iaici/articles/p338-molich.pdf
http://ouvea.edu.ups-tlse.fr/~truillet/ens/m2iaici/articles/p338-molich.pdf
http://www.cs.helsinki.fi/u/salaakso/kl2-2002/lahteet/Nielsen94-Enhancing-Heuristics.pdf
http://www.cs.helsinki.fi/u/salaakso/kl2-2002/lahteet/Nielsen94-Enhancing-Heuristics.pdf

www.manaraa.com

29(37)

A Usability Test Tasks

This appendix presents the task that was given to project leaders and software developers to
accomplish in the usability tests.

Task for project leaders

The task for project leaders consists of these three steps:

1. For each of the projects that you are leading, find how much work that have been
completed this week and how much work that should have been completed at the end
of this week.

2. For each of the projects that you are leading, find what and when the next milestone
is and check whether the milestone will be reached in time.

3. For each job in Jenkins which belongs to a project that you are leading, find the status
of the latest job execution and who started the execution.

Task for software developers

The task for software developers consists of these three steps:

1. Find how much work that have been completed this week and how much work that
should have been completed at the end of this week of the project that you are cur-
rently working with.

2. Find what and when the next milestone is and check whether the milestone will be
reached in time of the project that you are currently working with.

3. If the project that you are currently working with have one or more jobs in Jenkins
that belongs to the project, find the status of the latest job executions of these jobs.

www.manaraa.com

30(37)

www.manaraa.com

31(37)

B Technical Details Examples

This appendix presents a few examples of technical details from the two tools Pivotal
Tracker and Jenkins, which is used in the reference method.

Pivotal Tracker: API examples

These examples is taken directly from the official help manual for Pivotal Tracker API ver-
sion 3, which can be found at https://www.pivotaltracker.com/help/api?version=
v3. The examples uses the tool curl to make HTTP requests to the API.
Retrieving the recent activity of a specific project with id project id with a user token
user token x:

Executed command:
curl -H "X-TrackerToken: user_token_x" -X GET \\

"http://www.pivotaltracker.com/services/v3/projects/project_y/activities?limit=50"

Output:
<?xml version="1.0" encoding="UTF-8"?>
<activities type="array">

<activity>
<id type="integer">1031</id>
<version type="integer">175</version>
<event_type>story_update</event_type>
<occurred_at type="datetime">2009/12/14 14:12:09 PST</occurred_at>
<author>James Kirk</author>
<project_id type="integer">project_id</project_id>
<description>James Kirk accepted "More power to shields"</description>
<stories type="array">
<story>

<id type="integer">109</id>
<project_id type="integer">project_id</project_id>
<url>https://www.pivotaltracker.com/services/v3/projects/project_id/stories/109</url>
<accepted_at type="datetime">2009/12/14 22:12:09 UTC</accepted_at>
<current_state>accepted</current_state>

</story>
</stories>

</activity>
</activities>

https://www.pivotaltracker.com/help/api?version=v3
https://www.pivotaltracker.com/help/api?version=v3

www.manaraa.com

32(37)

Pivotal Tracker: Activity Webhooks examples

This example was done by creating a project in Pivotal Tracker and configure the Activity
Web Hook to send project activity information to a service called RequestBin1. RequestBin
is used to inspect incoming HTTP requests. This is the response after creating a user story
with the type Feature, title Dummy Feature using the web interface for Pivotal Tracker:

POST /oh124roh HTTP/1.1
Host: requestb.in
Content-Type: application/xml
Content-Length: 968
Connection: close
Accept: */*

<?xml version="1.0" encoding="UTF-8"?>
<activity>
<id type="integer">359133137</id>
<version type="integer">81</version>
<event_type>story_create</event_type>
<occurred_at type="datetime">2013/05/15 14:06:17 UTC</occurred_at>
<author>Simon Sandström</author>
<project_id type="integer">797067</project_id>
<description>Simon Sandström added "Dummy feature"</description>
<stories type="array">
<story>
<id type="integer">49925149</id>
<url>http://www.pivotaltracker.com/services/v3/projects/797067/stories/49925149</url>
<name>Dummy feature</name>
<story_type>feature</story_type>
<description>Just a dummy feature for testing the Activity WebHook.</description>
<estimate type="integer">2</estimate>
<current_state>unscheduled</current_state>
<owned_by>Simon Sandström</owned_by>
<requested_by>Simon Sandström</requested_by>

</story>
</stories>

</activity>

1See: http://requestb.in/

www.manaraa.com

33(37)

Jenkins: Notification Plugin examples

These examples was done by doing a clean install of Jenkins version 1.424.6 and adding a
job named Test. The job was configured to execute a shell script that returned an exit status
of 1 to simulate a script that failed. After confirming that the job could be executed using
the web interface of Jenkins, the plug-in Notification Plugin was installed and configured to
send execution information to a service called RequestBin2. RequestBin is used to inspect
incoming HTTP requests.
This is the information sent to RequestBin when starting the execution of the created job:

POST /12engqi1 HTTP/1.1
User-Agent: Java/1.6.0_27
Host: requestb.in
Content-Type: application/x-www-form-urlencoded
Content-Length: 119
Connection: close
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

{
"name":"Test",
"url":"job/Test/",
"build": {

"number":9,
"phase":"STARTED",
"url":"job/Test/9/"

}
}

This is the information sent to RequestBin when the execution of the created job finished:

POST /12engqi1 HTTP/1.1
User-Agent: Java/1.6.0_27
Host: requestb.in
Content-Type: application/x-www-form-urlencoded
Content-Length: 139
Connection: close
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2

{
"name":"Test",
"url":"job/Test/",
"build": {

"number":9,
"phase":"FINISHED",
"status":"FAILURE",
"url":"job/Test/9/"

}
}

2See: http://requestb.in/

www.manaraa.com

34(37)

www.manaraa.com

35(37)

C Result of Usability Tests

In this Appendix, the result data of the usability tests that have been conducted is presented.
The result is divided and presented per user. For each user, first the result of the usability
test of the reference procedure is presented, then the result of the usability test of the new
procedure.

Result of the Usability Test with Software Developer 1

Reference Procedure
User comments: None.
Completed the task: Yes.
Steps taken: Enters the Pivotal Tracker web page. Clicks the Sign In-link. Enters user
name. Enters password. Presses the login button. Selects the project. Enters the Jenkins
web page. Selects the project. Selects the latest execution.
Tools used: Pivotal Tracker, Jenkins.
Time taken: 110 seconds.
New Procedure
User comments: None
Completed the task: Partially: could not see if the next milestone was predicted to be
completed before the deadline, the user had to calculate it himself.
Steps taken: Enters prototype web page.
Tools used: Prototype.
Time taken: 36 seconds.

www.manaraa.com

36(37)

Result of the Usability Test with Software Developer 2

Reference Procedure
User comments: None.
Completed the task: Yes.
Steps taken: Enters the Pivotal Tracker web page. Clicks the Sign In-link. Enters user
name. Enters password. Presses the login button. Selects the project. Enters the Jenkins
web page. Selects the project. Selects the latest execution.
Tools used: Pivotal Tracker, Jenkins.
Time taken: 90 seconds.
New Procedure
User comments: None
Completed the task: Partially: could not see if the next milestone was predicted to be
completed before the deadline, the user did not try to calculate it himself.
Steps taken: Enters prototype web page.
Tools used: Prototype.
Time taken: 59 seconds.

Result of the Usability Test with Project Leader 1

Reference Procedure
User comments: ”I would like to get an overview of specific project members, how
much work they have completed and how much work that they have planned to do this
iteration. Currently it is only possible to see this information for each project, which
means that I need to summarise the work for each project member manually.”
Completed the task: Yes.
Steps taken: Enters the Pivotal Tracker web page. Clicks the Sign In-link. Enters user
name. Enters password. Presses the login button. Selects Project A. Selects Project
B. Selects Project C. Enters the Jenkins web page. Selects Project A. Selects the latest
build. Selects Project B. Selects the latest build. Selects Project C. Selects the latest
build.
Tools used: Pivotal Tracker, Jenkins.
Time taken: 472 seconds.
New Procedure
User comments: ”I would like to see different colors based on if a project’s job have
executed successfully or with any error in Jenkins, and also the specific time of an exe-
cution.”
Completed the task: Partially: could not see if the next milestones for each project was
predicted to be completed before the deadline, the user had to calculate it himself.
Steps taken: Enters prototype web page.
Tools used: Prototype.
Time taken: 97 seconds.

www.manaraa.com

37(37)

Result of the Usability Test with Project Leader 2

Reference Procedure
User comments: None.
Completed the task: Yes.
Steps taken: Enters the Pivotal Tracker web page. Clicks the Sign In-link. Enters user
name. Enters password. Presses the login button. Selects Project A. Selects Project B.
Selects Project C. Enters the Jenkins web page. Selects the build history link.
Tools used: Pivotal Tracker, Jenkins.
Time taken: 239 seconds.
New Procedure
User comments: None.
Completed the task: Partially: could not see if the next milestones for each project was
predicted to be completed before the deadline, the user had to calculate it himself.
Steps taken: Enters prototype web page.
Tools used: Prototype.
Time taken: 156 seconds.

	Introduction
	Background
	Goals
	Development Method
	Outline

	Description of the Reference Procedure
	Pivotal Tracker
	Jenkins
	Conclusion

	Analysis of an Existing Tool
	ProjectMonitor
	Conclusion

	Prototype of a New Tool
	System Design
	Implementation
	Conclusion

	Software Usability
	Usability Testing and Evaluation
	Comparison of the Different Procedures
	Conclusion

	Discussion
	Limitations
	Future Work

	Glossary
	References
	Usability Test Tasks
	Technical Details Examples
	Result of Usability Tests

